QUALITY BUILT SHORT THROW WOOFER OPTIMISED FOR SEALED ENCLOSURES

UPC:	685757152938
EAN:	0685757152938
Printed:	685757152938

INSTALLATION POINTS

Failure to observe any of these installation points will invalidate your warranty:

- Do not run this subwoofer infinite baffle.
- Ensure your enclosure is within the specification listed.
- Only use correctly rated non-combustible cables.

TS PARAMETERS

DETAILED TECHNICAL DATA

Power Handling (Per Driver): 250W WRMS (@0%Thd) Maximum Burp Power (Per Driver): 500w (@0%Thd) Nominal Impodance: 1 ohm

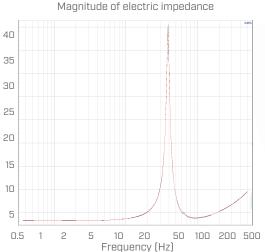
Nominal Impedance:	4 ohm
DC Impedance :	3.2 ohm
Voice Coil:	50.8 mm
Voice Coil Layers :	4
Magnet:	120mm x5mm
Magnet Type:	Y25 Ferrite

TEAM TIPS

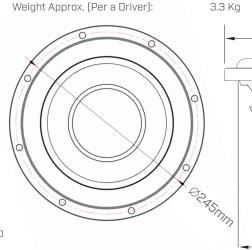
- We recommend to put all subwoofers in your system in a box with a shared air space.
- Remember that larger enclosures offer a deeper bass, whilst smaller ones offer more instant punch.

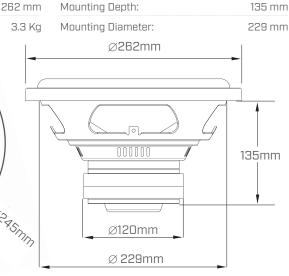
Also, filling the enclosure with Dacron will give a deeper sound but still with the punch of the current enclosure size.

BOX COMPATIBILITY


Recommended Box Type:	Sealed
Recommended Box Size:	15>45 Litres
Optimal Frequency Response:	30>100Hz

• For setting subwoofers it is possible to make a useful DIY clip detector. Wire an old tweeter and high voltage capacitor (we recommend a 250V 6.8uF) in line with the subwoofer. Next, play a 50Hz tone. Turn the gain up slowly until the tweeter makes a distinctive metallic rasp then back the gain off a small amount until the tweeter stops making the noise. Only use a tweeter you do not need as this can damage the tweeter.


Name	Value	Unit	Note	Name	Value	Unit	Note
RE	3.21	OHM	Electrical voice coil resistance at DC	BL	10.198	N/A	Force factor BL product
KRM	0.0012	OHM	Wright inductance model	LAMBDA	0.055		Suspension creep factor
ERM	0.96		Wright inductance model	QΤΡ	0.744		Total Q factor considering all losses
KXM	0.0107	OHM	Wright inductance model	QMS	9.458		Mechanical Q factor of driver in free air
EXM	0.82		Wright inductance model				considering RMS only
CMES	959.18	UF	Electrical capacitance representing moving mass	ĢES	0.752		Electrical Q factor of driver in free air considering RE only
LCES	LCES 17.53 MH		Electrical inductance representing driver	QTS	0.697		Total Q factor considering RE and RMS only
2020				VAS	25.99		Equivalent air volume of suspension
RES	40.44	OHM	Resistance due to mechanical losses	МQ	0.194	%	Ref. efficiency (2 PI radiation using RE)
FS	38.8	ΗZ	Driver resonance frequency	LM	85.05	DB	Sound pressure level
MMS	99.754	G	Mechanical mass of driver diaphragm				(SPL at 1M for 1W @ RE)
			assembly including air load and coil	LMOM	86.03	DB	Nom. sensitivity (SPL at 1M for 1W @ ZN)
MMD	92.978	G	Mechanical mass of voice coil and diaphragm without air load	RMSE Z	3.25	%	Root mean square fitting error of driver impedance Z(F)
RMS	2.572	KG/S	Mechanical resistance of total driver losses	RMSE HX	1.89	%	Root mean square fitting error of
CMS	0.169	169 MM/N	MM/N Mechanical compliance of driver suspension				transfer function HX(F)
				SD	330.06	CM2	Diaphragm area
KMS	5.93	N/MM	Mechanical stiffness of driver suspension	XMAX	12	mm	Total linear movement
	3.00	,					


FREQUENCY VS IMPEDANCE

TECHNICAL DRAWING

Total Diameter:

