QUALITY BUILT SHORT THROW WOOFER OPTIMISED FOR SEALED ENCLOSURES

UPC:	685757152945
EAN:	0685757152945
Printed:	685757152945

DETAILED TECHNICAL DATA

Power Handling (Per Driver):	250 WRMS (@0%Thd)
Maximum Burp Power (Per Driver):	500 W (@0%Thd)
Nominal Impedance:	4 ohm
DC Impedance :	3.2 ohm
Voice Coil:	50.8 mm
Voice Coil Layers :	4
Magnet:	120mm x 30mm
Magnet Type:	Y25 Ferrite

BOX COMPATIBILITY

Recommended Box Type:	Sealed
Recommended Box Size:	25>70Litres
Optimal Frequency	25>80Hz
Response:	

INSTALLATION POINTS

Failure to observe any of these installation points will invalidate your warranty:

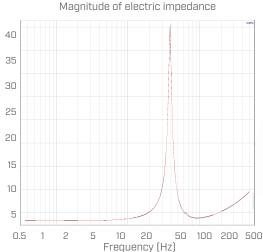
- O not run this subwoofer infinite baffle.
- Ensure your enclosure is within the specification listed.
- Only use correctly rated non-combustible cables.

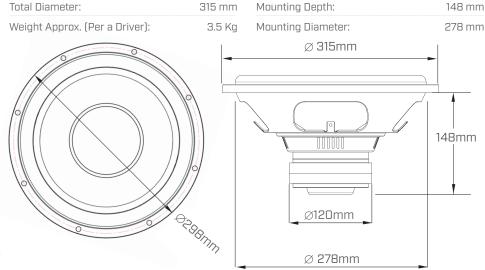
TEAM TIPS

- We recommend to put all subwoofers in your system in a box with a shared air space.
- Remember that larger enclosures offer a deeper bass, whilst smaller ones offer more instant punch.

Also, filling the enclosure with Dacron will give a deeper sound but still with the punch of the current enclosure size.

For setting subwoofers it is possible to make a useful DIY clip detector. Wire an old tweeter and high voltage capacitor (we recommend a 250V 6.8uF) in line with the subwoofer. Next, play a 50Hz tone. Turn the gain up slowly until the tweeter makes a distinctive metallic rasp then back the gain off a small amount until the tweeter stops making the noise. Only use a tweeter you do not need as this can damage the tweeter.


TS PARAMETERS


Name	Value	Unit	Note
RE	3.24	OHM	Electrical voice coil resistance at DC
KRM	0.001	OHM	Wright inductance model
ERM	0.99		Wright inductance model
KXM	0.0115	DHM	Wright inductance model
EXM	0.81		Wright inductance model
CMES	1153.76	UF	Electrical capacitance representing moving mass
LCES	11.25	МН	Electrical inductance representing driver compliance
RES	29.54	DHM	Resistance due to mechanical losses
FS	44.2	HZ	Driver resonance frequency
MMS	115.558	G	Mechanical mass of driver diaphragm assembly including air load and coil
MMD	103.991	G	Mechanical mass of voice coil and diaphragm without air load
RMS	3.391	KG/S	Mechanical resistance of total driver losses
CMS	0.112	MM/N	Mechanical compliance of driver suspension
KMS	8.9	N/MM	Mechanical stiffness of driver suspension

Name	Value	Unit	Note
BL	10.008	N/A	Force factor BL product
LAMBDA	0.064		Suspension creep factor
QTP	1.001		Total Q factor considering all losses
QMS	9.4		Mechanical Q factor of driver in free air considering RMS only
QES	1.039		Electrical Q factor of driver in free air considering RE only
QTS	0.836		Total Q factor considering RE and RMS only
VAS	35.322		Equivalent air volume of suspension
ΜQ	0.282	%	Ref. efficiency (2 PI radiation using RE)
LM	86.7	DB	Sound pressure level (SPL at 1M for 1W @ RE)
LMOM	87.61	DB	Nom. sensitivity (SPL at 1M for 1W @ ZN)
RMSE Z	6.4	%	Root mean square fitting error of driver impedance Z(F)
RMSE HX	2.67	%	Root mean square fitting error of transfer function HX(F)
SD	471.44	CM2	Diaphragm area
XMAX	12	mm	Total linear movement

FREQUENCY VS IMPEDANCE

TECHNICAL DRAWING

