PROFESSIONAL GRADE MEDIUM THROW DEEP BASS SUBWOOFER OPTIMISED FOR SEALED OR PORTED ENCLOSURES

DETAILED TECHNICAL DATA

UPC: 685757152778 EAN: 0685757152778

Printed:

Power Handling (Per Driver): 750 WRMS (@0%Thd) Nominal Impedance: 2+2 ohm DC Impedance: 1.9+1.9 ohm Voice Coil: 50.8 mm Voice Coil Layers : 8 flat wire Magnet: 145 mm x 40 mm Magnet Type: Y38 Ferrite

BOX COMPATIBILITY

Recommended Box Type:	Sealed/Ported
Recommended Box Size:	20>40Litres
Optimal Frequency Response:	35>110Hz
Recommend Port Cross Sectional Area (CSA):	10"2>20"2
Recommended Tuning Frequency:	35>50Hz

INSTALLATION POINTS

Failure to observe any of these installation points will invalidate your warranty:

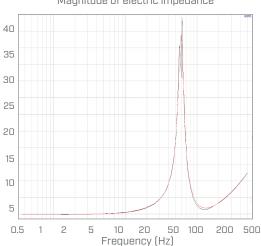
- Do not run this subwoofer infinite baffle.
- Ensure your enclosure is within the specification listed.
- Only use correctly rated non-combustible cables.

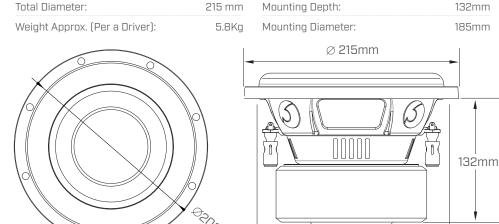
TEAM TIPS

- We recommend to put all subwoofers in your system in a box with a shared air space.
- We do not recommend to run dual coil woofers from separate mono channels or amplifiers. This also applies (but less so) to single coil speakers in the same enclosure air space run from separate mono channels. We always recommend the use of a larger amplifier when possible in this case.
- For setting subwoofers it is possible to make a useful DIY clip detector. Wire an old tweeter and high voltage capacitor (we recommend a 250V 6.8uF) in line with the subwoofer. Next, play a 50Hz tone. Turn the gain up slowly until the tweeter makes a distinctive metallic rasp then back the gain off a small amount until the tweeter stops making the noise. Only use a tweeter you do not need as this can damage the tweeter.

132mm

TS PARAMETERS


Name		Unit	Note
RE	3.81	ОНМ	Electrical voice coil resistance at DC
KRM	0.0049	OHM	Wright inductance model
ERM	0.83		Wright inductance model
KXM	0.0183	DHM	Wright inductance model
EXM	0.81		Wright inductance model
CMES	396.41	UF	Electrical capacitance representing moving mass
LCES	16.8	МН	Electrical inductance representing driver compliance
RES	50.01	DHM	Resistance due to mechanical losses
FS	61.7	HZ	Driver resonance frequency
MMS	91.048	G	Mechanical mass of driver diaphragm assembly including air load and coil
MMD	88.119	G	Mechanical mass of voice coil and diaphragm without air load
RMS	4.593	KG/S	Mechanical resistance of total driver losses
CMS	0.073	MM/N	Mechanical compliance of driver suspension
KMS	13.68	N/MM	Mechanical stiffness of driver suspension


Name	Value	Unit	Note
BL	15.155	N/A	Force factor BL product
LAMBDA	0.087		Suspension creep factor
QTP	0.634		Total Q factor considering all losses
QMS	7.683		Mechanical Q factor of driver in free air considering RMS only
QES	0.586		Electrical Q factor of driver in free air considering RE only
QTS	0.545		Total Q factor considering RE and RMS only
VAS	3.6846		Equivalent air volume of suspension
МФ	0.142	%	Ref. efficiency (2 PI radiation using RE)
LM	83.72	DB	Sound pressure level (SPL at 1M for 1W @ RE)
LMOM	83.92	DB	Nom. sensitivity (SPL at 1M for 1W @ ZN)
RMSE Z	14.11	%	Root mean square fitting error of driver impedance Z(F)
RMSE HX	2.55	%	Root mean square fitting error of transfer function HX(F)
SD	188.69	CM2	Diaphragm area
XMAX	15	mm	Total linear movement

FREQUENCY VS IMPEDANCE

TECHNICAL DRAWING

Magnitude of electric impedance

Ø151mm

Ø 185mm -